Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611869

RESUMO

The fascaplysin and homofascaplysin class of marine natural products has a characteristic 12H-pyrido[1,2-a:3,4-b']diindole pentacyclic structure. Fascaplysin was isolated in 1988 from the marine sponge Fascaplysinopsis bergquist sp. The analogs of fascaplysin, such as homofascaplysins A, B, and C, were discovered late in the Fijian sponge F. reticulate, and also have potent antimicrobial activity and strong cytotoxicity against L-1210 mouse leukemia. In this review, the total synthesis of fascaplysin and its analogs, such as homofascaplysins A, B, and C, will be reviewed, which will offer useful information for medicinal chemistry researchers who are interested in the exploration of marine alkaloids.


Assuntos
Alcaloides , Antineoplásicos , Produtos Biológicos , Carbolinas , Indóis , Indolizinas , Poríferos , Compostos de Amônio Quaternário , Animais , Camundongos , Alcaloides/farmacologia , Bandagens
2.
Nanoscale Adv ; 6(4): 1202-1212, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356632

RESUMO

Conventional channel-based microfluidic platforms have gained prominence in controlling the bottom-up formation of phospholipid based nanostructures including liposomes. However, there are challenges in the production of liposomes from rapidly scalable processes. These have been overcome using a vortex fluidic device (VFD), which is a thin film microfluidic platform rather than channel-based, affording ∼110 nm diameter liposomes. The high yielding and high throughput continuous flow process has a 45° tilted rapidly rotating glass tube with an inner hydrophobic surface. Processing is also possible in the confined mode of operation which is effective for labelling pre-VFD-prepared liposomes with fluorophore tags for subsequent mechanistic studies on the fate of liposomes under shear stress in the VFD. In situ small-angle neutron scattering (SANS) established the co-existence of liposomes ∼110 nm with small rafts, micelles, distorted micelles, or sub-micelle size assemblies of phospholipid, for increasing rotation speeds. The equilibria between these smaller entities and ∼110 nm liposomes for a specific rotational speed of the tube is consistent with the spatial arrangement and dimensionality of topological fluid flow regimes in the VFD. The prevalence for the formation of ∼110 nm diameter liposomes establishes that this is typically the most stable structure from the bottom-up self-assembly of the phospholipid and is in accord with dimensions of exosomes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37898625

RESUMO

BACKGROUND: The effects of ultraviolet (UV) filters in the aquatic environment have been well studied, but environmental exposures remain unclear and understudied. Consumer usage directly influences the amount of sunscreen products, and subsequently UV filters, potentially released into the environment. OBJECTIVE: To conduct a literature review of previous research into sunscreen application thickness, develop a questionnaire protocol designed to semi-quantify sunscreen usage by US consumers, and conduct a large-scale survey to determine a sunscreen application thickness (to face and body) that is more refined than conservative defaults. The United States Food & Drug Administration (US FDA) recommends a sunscreen application rate of 2 mg/cm2. This value is typically used as a worst-case assumption in environmental exposure assessments of UV filters. METHODS: Designed a novel approach to estimate lotion sunscreen application thickness using an online questionnaire protocol employing visual references and self-reported height and weight of the respondents. A literature review was also conducted to collect historical sunscreen usage. RESULTS: Over 9000 people were surveyed in the US, and after the dataset was refined, their sunscreen application thickness was estimated based on calculated body surface area and reported sunscreen amounts. The mean and median values for survey respondents are 3.00 and 1.78 mg/cm2, respectively, for facial application thickness and 1.52 and 1.35 mg/cm2, respectively, for body application thickness. Earlier research from 1985-2020 reported 36 of the 38 values are below the US FDA's recommended application thickness of 2 mg/cm2 (range 0.2-5 mg/cm2). IMPACT STATEMENT: This web-based survey is the first of its kind, designed specifically to quantify sunscreen application in a large and diverse set of consumers. This method provides a greater reach to larger populations thus enabling more granular data analysis and understanding. Exposure assessments of sunscreen ingredients typically use conservative parameters. These data can refine those assessments and allow for more informed and science-based risk management decisions.

4.
Chem Sci ; 14(41): 11389-11401, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886106

RESUMO

Pathway complexity results in unique materials from the same components according to the assembly conditions. Here a chiral acyl-semicarbazide gelator forms three different gels of contrasting fibre morphology (termed 'gelmorphs') as well as lyotropic liquid crystalline droplets depending on the assembly pathway. The gels have morphologies that are either hyperhelical (HH-Gel), tape-fibre (TF-Gel) or thin fibril derived from the liquid crystalline phase (LC-Gels) and exhibit very different rheological properties. The gelator exists as three slowly interconverting conformers in solution. All three gels are comprised of an unsymmetrical, intramolecular hydrogen bonded conformer. The kinetics show that formation of the remarkable HH-Gel is cooperative and is postulated to involve association of the growing fibril with a non-gelling conformer. This single molecule dynamic conformational library shows how very different materials with different morphology and hence very contrasting materials properties can arise from pathway complexity as a result of emergent interactions during the assembly process.

5.
RSC Adv ; 13(37): 25846-25852, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664192

RESUMO

Oxybenzone (OXB), a very widely used sunscreen ingredient has the potential to block both UVA and UVB but can penetrate through skin. Studies have revealed its presence in the blood and urine of most humans, which may lead to long-term health effects. As the confined cavities of macrocycles can alter the physical and chemical properties of encapsulated guests, in this study, we investigated the formation of host-guest complexes between C-methylresorcin[4]arene and OXB. Combined experimental (NMR spectroscopy, UV/vis absorption, and fluorescence spectroscopy) and theoretical investigation confirmed the formation of a weak host-guest complex that had a 1 : 1 stoichiometry. Furthermore, skin permeation testing revealed that complexation by C-methylresorcin[4]arene significantly reduced the skin permeation of OXB which can potentially limit the harmful effects of this organic sunscreen.

6.
Phys Chem Chem Phys ; 25(1): 131-141, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475500

RESUMO

The supramolecular assembly process is a widespread phenomenon found in both synthetically engineered and naturally occurring systems, such as colloids, liquid crystals and micelles. However, a basic understanding of the evolution of self-assembly processes over time remains elusive, primarily owing to the fast kinetics involved in these processes and the complex nature of the various non-covalent interactions operating simultaneously. With the help of a slow-evolving supramolecular gel derived from a urea-based gelator, we aim to capture the different stages of the self-assembly process commencing from nucleation. In particular, we are able to study the self-assembly in real time using time-resolved small-angle neutron scattering (SANS) at length scales ranging from approximately 30 Å to 250 Å. Systems with and without sonication are compared simultaneously, to follow the different kinetic paths involved in these two cases. Time-dependent NMR, morphological and rheological studies act complementarily to the SANS data at sub-micron and bulk length scales. A hollow columnar formation comprising of gelator monomers arranged radially along the long axis of the fiber and solvent in the core is detected at the very early stage of the self-assembly process. While sonication promotes uniform growth of fibers and fiber entanglement, the absence of such a stimulus helps extensive bundle formation at a later stage and at the microscopic domain, making the gel system mechanically robust. The results of the present work provide a thorough understanding of the self-assembly process and reveal a path for fine-tuning such growth processes for applications such as the cosmetics industry, 3D printing ink development and paint industry.

7.
RSC Adv ; 12(49): 32046-32055, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36415550

RESUMO

Supramolecular interactions are well recognized and many of them have been extensively studied in chemistry. The formation of supramolecular complexes that rely on weak force interactions are less well studied in bilayer membranes. Herein, a supported bilayer membrane is used to probe the penetration of a complex between tetracycline and a macrocyclic polyether. In a number of bacterial systems, the presence of the macrocycle has been found to significantly enhance the potency of the antimicrobial in vitro. The crown·tetracycline complex has been characterized in solution, neutron reflectometry has probed complex penetration, and the phenomena have been modeled by computational methods.

8.
RSC Adv ; 12(24): 14998-15007, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35702431

RESUMO

Personal care products commonly contain perfume mixtures, consisting of numerous perfume raw materials (PRMs), and cosolvents. The lipophilicity and structure of an individual PRM is known to affect its localization within the surfactant self-assembly as well as the micellar geometry. However, because multiple PRMs are used in formulations, significant intermolecular interactions between the PRMs and between the PRMs and the surfactant tail may also influence the location of the PRMs and their effects on the self-assembly. Herein, two anionic/zwitterionic mixed-surfactant systems (sodium trideceth-2 sulfate (ST2S)/cocamidopropyl betaine (CAPB) and sodium laureth-3 sulfate/CAPB) were formulated with a cosolvent (dipropylene glycol (DPG)) and 12 PRMs of varying structures and lipophilicities. This 12 PRM accord is simpler than a fully formulated perfume but more complex than a single perfume molecule. The geometric variations in the self-assemblies were evaluated using small-angle neutron scattering, perfume head space concentrations were determined using gas chromatography-mass spectrometry, and perfume localization was identified using NMR spectroscopy. The addition of the perfume accord caused enlargement of the micelles in both surfactant systems, with a greater change observed for ST2S/CAPB formulations. Furthermore, the addition of DPG to ST2S/CAPB resulted in micelle shrinkage. The micelle geometries and PRM localization in the micelles were affected by the degree of branching in the surfactant tail.

9.
Org Biomol Chem ; 20(17): 3440-3468, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35394477

RESUMO

Imidazo[1,5-a]pyridine is a significant structural component of a large number of agrochemicals and pharmaceuticals. The synthesis of imidazo[1,5-a]pyridine has been a subject of intense research for numerous decades. A large number of transformations are now available to conveniently access imidazo[1,5-a]pyridine from readily available starting materials. This review details the recent development in imidazo[1,5-a]pyridine construction involving cyclocondensation, cycloaddition, oxidative cyclization, and transannulation reactions.


Assuntos
Imidazóis , Piridinas , Ciclização , Imidazóis/química , Oxirredução , Piridinas/química
10.
Angew Chem Int Ed Engl ; 61(30): e202203010, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35353949

RESUMO

The magnetic properties of nickel-seamed C-pyrogallol[4]arene (PgC3 Ni) hexamers and dimers are studied for the first time in solution. The combination of small-angle neutron scattering and superconducting quantum interference device magnetometer measurements of the solution species reveal their paramagnetic and weakly antiferromagnetic behaviour. Surprisingly, the magnetic results indicated the presence of an unprecedented 13 Å-radius species, larger than both the dimeric and hexameric nanocapsules with both octahedral and square-planar metal centers. To confirm the presence of this novel species, we performed a mechanistic study of PgC3 Ni as a function of temperature and solvent and deduced the presence of two additional new species: a) an 11 Šcylinder with Ni atoms seaming the tubular framework and b) an 8 Å-radius sphere with non-interacting Ni centers located within the internal cavity. Select parameters that shift the equilibrium towards desired species are also identified.

11.
Pharm Dev Technol ; 27(2): 242-250, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35129055

RESUMO

Dupuytren's disease is a progressive fibrotic condition of the hand that causes contracture of fingers in later stages. Our previous in vitro studies suggest that the transformation of fibroblasts to myofibroblasts induced by transforming growth factor-beta can be inhibited by the addition of the antifibrotic drug, pirfenidone (PFD). We hypothesize that the local delivery of PFD directly to nodules can potentially prevent the progression to cords and, furthermore, that injection of PFD after the resection of cords can limit the recurrence of the disease. The purpose of this research was to develop a PFD injectable solution and to assess its safety in mice. Based on preformulation observations, a sterile solution containing up to 8 mg/0.4 mL of PFD was prepared in a phosphate buffer with and without 15%v/v N-methyl-2-pyrrolidone. Accelerated stability studies suggested that the product should be kept at refrigerated temperature (2-8 °C) for long-term storage. Safety studies involving subcutaneous administration to mice showed that 2-4 mg of PFD in 0.4 mL aqueous buffer did not elicit a significant inflammatory reaction. However, 4 mg PFD in 0.4 mL (FB) of buffer: NMP cosolvent system led to a significant increase in the influx of inflammatory cells and 8 mg PFD (FA) in the cosolvent system was lethal to the animals.


Assuntos
Contratura de Dupuytren , Animais , Contratura de Dupuytren/tratamento farmacológico , Fibroblastos , Camundongos , Piridonas/farmacologia
12.
ACS Appl Mater Interfaces ; 14(9): 11597-11609, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213806

RESUMO

Aluminum hydrolysis chemistry is an important part of modern society because of the dominance of Al(III) as a highly effective antiperspirant active. However, the century-old chemistry centered on aluminum chloride (ACL) is not comprehensive enough to address all of the in vivo events associated with current commercial antiperspirants and their mechanism of action. The present study aims to address the knowledge gap among extensively studied benchmark ACL, its modified version aluminum chlorohydrate (ACH), and a more complex but less explored group of aluminum zirconium chlorohydrate glycine complexes (ZAG salts) toward understanding the mechanism of action under consumer-relevant conditions. ACH, which is the Al source used in the manufacture of ZAG salts, provides a bridge between ACL and ZAG chemistry. High viscosity and gel formation driven by pH and a specific Al(III) salt upon hydrolysis are considered the criteria for building an in vivo occlusive mass to retard or stop the flow of sweat to the skin surface, thus providing an antiperspirant effect. Rheological studies indicated that ACL and aluminum zirconium tetrachlorohydrex glycine (TETRA) were the most efficacious salt actives. Spectroscopic studies, diffraction studies, and elemental analysis suggested that small metal oxide and hydroxide species with coparticipating glycine as well as various polynuclear and oligomeric species are the key to gel formation. At a given pH, the key ingredients (NaCl, urea, bovine serum albumin, and lactic acid) in artificial sweat were found to have little influence on Al(III) salt hydrolysis. The effects of the sweat components were mostly limited to local complex formation and kinetic modification. The in vitro comparative experiments with various Al(III) and ZAG salt systems offer unprecedented insights into the chemistry of different salt types, thus paving the way for engineering more efficacious antiperspirant systems.


Assuntos
Compostos de Alumínio/química , Antiperspirantes/química , Glicina/química , Sais/química , Zircônio/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade , Difração de Raios X
13.
Langmuir ; 38(5): 1705-1715, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35078313

RESUMO

Metallosupramolecular gel (MSG) is a unique combination of metal-ligand coordination chemistry and supramolecular gel chemistry with extraordinary adaptivity and softness. Such materials find broad uses in industry, pharmaceutical and biomedical sectors, and in technology generation among many others. Pyridyl-appended bis(urea) gelator systems have been extensively studied as potential MSG-forming materials in the presence of various metal ions. The previous molecular engineering approaches depicted competitive intermolecular and intramolecular binding modes involving urea and pyridyl groups and further fine-tuned by the presence of various molecular spacers. In those studies, formation of intermolecular hydrogen bonding among urea moieties to form urea tape was found to be the key factor in one-dimensional assembly and gel formation. In the present study, we show how two isomeric pyridyl-appended bis(urea) ligands can be designed appropriately to essentially eliminate the interference of competitive factors, leaving the intermolecular urea assembly practically unaffected even in the presence of metal ions. We found that one of the two ligands (L2) and the mixed ligand (L1 + L2) assemblies formed gel in the presence and absence of various metal ions. A metal ion with a linear coordination geometry significantly strengthened the gels. Moreover, an inherently weak L1 + L2 assembly appears to be more adaptive in accommodating larger metal ions especially with nonlinear coordination geometry preferences. Small-angle neutron scattering and rheological, spectroscopic, and morphological characterizations, collectively, capture a detailed interplay among ligand assembly, metal-ligand coordination, and adaptivity, driven by the pure versus mixed ligand assemblies. The knowledge gathered from the present study would be highly beneficial in engineering the metallosupramolecular polymeric assemblies toward their functional applications.

14.
Langmuir ; 38(4): 1334-1347, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051338

RESUMO

Perfume mixtures contain perfume raw materials (PRMs) with varying structures and hydrophobicities, which influence PRM localization within a surfactant-based formulation and thereby affect the phase behavior. In rinse-off products, the addition of water can further affect the phase behavior. In this study, a mixture of 12 PRMs was used as the oil phase in an aqueous system consisting of sodium trideceth-2 sulfate as a primary surfactant, cocamidopropyl betaine as a cosurfactant, and dipropylene glycol as a cosolvent. A series of phase diagrams were constructed with increasing water content, simulating the use conditions for rinse-off products, to determine how the phase boundaries shift with dilution. Using these phase diagrams, the compositions of interest in the micelle without perfume, micelle with perfume, microemulsion, and micelle-microemulsion transition regions were identified at each dilution level. The structural changes were probed through combined small-angle neutron scattering (SANS) and cryo-transmission electron microscopy analyses. The SANS results showed that ellipsoidal micelles were maintained as the perfume content and the dilution level increased. With ≥50 wt % water, increasing the perfume content increased the micelle volume. Interestingly, a higher rate of volume increase was observed at ≥70 wt % water. Notably, the volumes of the micelles with and without perfume increased steadily with dilution, whereas the volumes of the assemblies in the transition region and the microemulsion region increased more rapidly once diluted to 70 and 80 wt % water, respectively.

15.
Front Microbiol ; 12: 639362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220733

RESUMO

The life-threatening pandemic concerning multi-drug resistant (MDR) bacteria is an evolving problem involving increased hospitalizations, billions of dollars in medical costs and a remarkably high number of deaths. Bacterial pathogens have demonstrated the capacity for spontaneous or acquired antibiotic resistance and there is virtually no pool of organisms that have not evolved such potentially clinically catastrophic properties. Although many diseases are linked to such organisms, three include cystic fibrosis (CF), burn/blast wounds and urinary tract infections (UTIs), respectively. Thus, there is a critical need to develop novel, effective antimicrobials for the prevention and treatment of such problematic infections. One of the most formidable, naturally MDR bacterial pathogens is Pseudomonas aeruginosa (PA) that is particularly susceptible to nitric oxide (NO), a component of our innate immune response. This susceptibility sets the translational stage for the use of NO-based therapeutics during the aforementioned human infections. First, we discuss how such NO therapeutics may be able to target problematic infections in each of the aforementioned infectious scenarios. Second, we describe a recent discovery based on years of foundational information, a novel drug known as AB569. AB569 is capable of forming a "time release" of NO from S-nitrosothiols (RSNO). AB569, a bactericidal tandem consisting of acidified NaNO2 (A-NO2 -) and Na2-EDTA, is capable of killing all pathogens that are associated with the aforementioned disorders. Third, we described each disease state in brief, the known or predicted effects of AB569 on the viability of PA, its potential toxicity and highly remote possibility for resistance to develop. Finally, we conclude that AB569 can be a viable alternative or addition to conventional antibiotic regimens to treat such highly problematic MDR bacterial infections for civilian and military populations, as well as the economical burden that such organisms pose.

16.
RSC Adv ; 11(42): 25858-25866, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479452

RESUMO

The phase analysis of a mixed surfactant system is much more complex than that for a single surfactant system. The addition of fragrance further enhances the complexity of such colloidal systems. The wide variation in structure and log P values of perfume raw materials influence its partitioning into the micellar phase. Herein, we have created a simplified perfume accord consisting of three perfume raw materials (3-PRM) and investigated its loading within a mixed-surfactant system consisting of sodium trideceth-2 sulfate/ST2S and cocamidopropyl betaine/CAPB, along with citric acid and dipropylene glycol. We performed a systematic phase diagram analysis and identified the isotropic phases and compositions of interest. Select compositions from the phase diagram were further investigated to learn how the geometry of the surfactant self-assembly and the localization of the PRMs within the surfactant self-assembly changed when water or perfume is added. A combined small-angle neutron scattering/SANS and NMR methodology was used to identify variation in colloidal domains and positioning of perfume molecules at varying dilutions/rinse off scenarios. The results obtained were utilized to better distinguish distorted micelles from true microemulsions. The systematic investigation here provides a fundamental understanding about the self-assembly, encapsulation and perfume release from a commercially relevant mixed surfactant system.

17.
RSC Adv ; 11(6): 3342-3345, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424267

RESUMO

The structural stability and solution geometry of zinc-seamed-C-propylpyrogallol[4]arene dimers has been studied in solution using in situ neutron scattering and 2D-DOSY NMR methods. In comparison with the structures of the analogous copper-/nickel-seamed dimeric entities, the spherical geometry of the PgC3Zn species (R = 9.4 Å; diffusion coefficient = 1.05 × 10-10 m2 s-1) is larger due to the presence of ligands at the periphery in solution. This enhanced radius in solution due to ligation is also consistent with the findings of model molecular dynamics simulations of the zinc-seamed dimers.

18.
NPJ Sci Food ; 4: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964127

RESUMO

Major challenges for optimizing the benefits of fish oil on human health are improved bioavailability while overcoming the strong odor and avoiding significant oxidation of the omega-3 polyunsaturated fatty acids (PUFAs). The scalable continuous flow thin film vortex fluidic device (VFD) improves the Tween 20 encapsulation of fish oil relative to conventional homogenization processing, with the fish oil particles significantly smaller and the content of the valuable omega-3 fatty acids higher. In addition, after 14 days storage the remaining omega-3 fatty acids content was higher, from ca 31.0% for raw fish oil to ca 62.0% of freeze-dried encapsulated fish oil. The VFD mediated encapsulated fish oil was used to enrich the omega-3 fatty acid content of apple juice, as a model water-based food product, without changing its sensory values. The versatility of the VFD was further demonstrated in forming homogenous suspensions of fish oil containing water-insoluble bioactive molecules, curcumin and quercetin. We have also captured, for the first time, real-time structural changes in nanoencapsulation by installing a VFD with in in situ small angle neutron scattering. Real-time measurements afford valuable insights about self-assembly in solution.

19.
Chem Commun (Camb) ; 56(85): 12985-12988, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32996478

RESUMO

We report a new synthesis of the water-soluble compound 1,3,5-trihydroxy-2,4,6-trimethylsulfonic acid (1), which exists in two tautomeric forms (60 : 40::enol%:keto%) and can be used as a proton conductor. Quantum chemical calculations show the importance of intramolecular hydrogen bonding and the presence of implicit MeOH solvent on the relative stabilities of the tautomers. 1 complexes with lanthanides through its sulfonato groups and forms a layered cage-like structure with one intramolecular and two intermolecular hydrogen bonds.

20.
RSC Adv ; 10(26): 15148-15153, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495443

RESUMO

We report on the permeation of free and macrocycle-bound avobenzone across a POPC lipid bilayer through combined neutron reflectometry experiments and molecular dynamics simulations. Results indicate that the p-phosphonated calix[8]arene macrocycle limits the avobenzone penetration into the upper leaflet of the membrane. Hence, it could serve as a useful vehicle for safer formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...